Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
NA (Ed.)One approach to improve long-term coral restoration success utilizes naturally stress-tolerant corals from the wild. While the focus has primarily been on thermal stress, low oxygen is a growing threat to coral reefs and restoration efforts should also consider hypoxia tolerance. Here we determine if Siderastrea siderea and Agaricia tenuifolia populations from a reef with a historical record of low oxygen exhibit evidence of local adaptation to hypoxic events, compared to populations from a reference reef. We employed a laboratory-based reciprocal transplant experiment mimicking a severe 14-night hypoxic event and monitored bleaching responses, photo-physiology, metabolic rates, and survival of all four populations during, and for two weeks following the event. In both species, we found the populations from the hypoxic reef either fully persisted or recovered within 3 days of the event. In contrast, the conspecific naïve populations from the well-oxygenated reference reef experienced bleaching and death. This showcases the vulnerability of naïve corals exposed to low oxygen but also suggests that corals from the hypoxic reef locally adapted to survive severe episodic hypoxia. Other reefs with past episodic low oxygen may also be home to corals with adaptation signatures to hypoxia and may be useful for restoration efforts.more » « lessFree, publicly-accessible full text available March 1, 2026
-
ABSTRACT Tropical reef ecosystems are strongly influenced by the composition of coral species, but the factors influencing coral diversity and distributions are not fully understood. Here we demonstrate that large variations in the relative abundance of three major coral species across adjacent Caribbean reef sites are strongly related to their different low O2tolerances. In laboratory experiments designed to mimic reef conditions, the cumulative effect of repeated nightly low O2drove coral bleaching and mortality, with limited modulation by temperature. After four nights of repeated low O2, species responses also varied widely, from > 50% bleaching inAcropora cervicornisto no discernable sensitivity ofPorites furcata.A simple metric of hypoxic pressure that combines these experimentally derived species sensitivities with high‐resolution field data accurately predicts the observed relative abundance of species across three reefs. Only the well‐oxygenated reef supported the framework‐building hypoxia‐sensitiveAcropora cervicornis, while the hypoxia‐tolerant weedy speciesPorites furcatawas dominant on the most frequently O2‐deplete reef. Physiological exclusion of acroporids from these O2‐deplete reefs underscores the need for hypoxia management to reduce extirpation risk.more » « less
-
Land use and land cover (LULC) can significantly alter river water, which can in turn have important impacts on downstream coastal ecosystems by delivering nutrients that promote marine eutrophication and hypoxia. Well-documented in temperate systems, less is known about the way land cover relates to water quality in low-lying coastal zones in the tropics. Here we evaluate the catchment LULC and the physical and chemical characteristics of six rivers that contribute flow into a seasonally hypoxic tropical bay in Bocas del Toro, Panama. From July 2019 to March 2020, we routinely surveyed eight physical and chemical characteristics (temperature, specific conductivity, salinity, pH, dissolved oxygen (DO), nitrate and nitrite, ammonium, and phosphate). Our goals were to determine how these physical and chemical characteristics of the rivers reflect the LULC, to compare the water quality of the focal rivers to rivers across Panama, and to discuss the potential impacts of river discharge in the Bay. Overall, we found that the six focal rivers have significantly different river water characteristics that can be linked to catchment LULC and that water quality of rivers 10 s of kilometers apart could differ drastically. Two focal catchments dominated by pristine peat swamp vegetation in San San Pond Sak, showed characteristics typical of blackwater rivers, with low pH, dissolved oxygen, and nutrients. The remaining four catchments were largely mountainous with >50% forest cover. In these rivers, variation in nutrient concentrations were associated with percent urbanization. Comparisons across Panamanian rivers covered in a national survey to our focal rivers shows that saltwater intrusions and low DO of coastal swamp rivers may result in their classification by a standardized water quality index as having slightly contaminated water quality, despite this being their natural state. Examination of deforestation over the last 20 years, show that changes were <10% in the focal catchments, were larger in the small mountainous catchments and suggest that in the past 20 years the physical and chemical characteristics of river water that contributes to Almirante Bay may have shifted slightly in response to these moderate land use changes. (See supplementary information for Spanish-language abstract).more » « less
An official website of the United States government
